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Abstract
We introduce the concept of time of emergence of economic impacts (ToEI), which identifies the
initial moment when the climate change impact signal exceeds a previously defined threshold of
past economic output shocks in a given geographic area. We compute the ToEI using probabilistic
climate change projections and impact functions from three integrated assessment models of
climate change: DICE, RICE and CLIMRISK. Our results demonstrate that, in terms of the
business-as-usual carbon emissions scenario, the global economy could reach its ToEI by 2095.
Regional results highlight areas that are likely to reach the ToEI sooner, namely Western Europe by
2075, India by 2083, and Africa by 2085. We also explore local-scale variations in the ToEI
demonstrating that, for example, Paris already reached the ToEI around 2020, while Shanghai will
reach it around 2080. We conclude that the ToEI methodology can be applied to impact models of
varying scales when sufficient historical impact data are available. Moreover, unprecedented
impacts of climate change in the 21st century may be experienced even in economically developed
regions in the US and Europe. Finally, moderate to stringent climate change mitigation policies
could delay the extreme economic impacts of climate change by three decades in Latin America,
the Middle East, and Japan, by two decades in India, Western Europe, and the US, and by one
decade in Africa. Our results can be used by policymakers interested in implementing timely
climate policies to prevent potentially large economic shocks due to climate change.

1. Introduction

Local estimates of economic impacts and risks related
to climate change are gaining increasing import-
ance in guiding decision-making about climate policy
(Botzen et al 2019). Metrics of relative risk and
time of exceedance of severe impacts provide insights
that may prove relevant to both climate change
policy and communicating the associated risk. We
believe that a country’s history of economic shocks
can provide decision-makers with a useful refer-
ence baseline to gauge the severity of future climate-
induced economic shocks and the challenges various
emission trajectories imply for a society. Future cli-
mate impacts that exceed a certain high threshold
of past total economic shocks could have severe

implications for the economy. To guide climate policy
towards preventing such climate shocks, it is import-
ant to have information about when, where, and
under which greenhouse gas emission scenarios these
shocks are more likely to occur.

The primary objective of this paper is to present
a methodology for gaining insights into the time of
emergence of economic impacts (ToEI) of climate
change. We provide estimates of the ToEI by pla-
cing local-level climate damages in the perspective of
historical country-level economic developments. We
define ToEI as the first moment in time when future
climate change impacts expressed as a percentage of
GDP losses exceed a pre-defined threshold of eco-
nomic GDP shocks due to climate and non-climate
effects. Hence, the ToEI provides a historical context
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to the results of emerging climate impacts, which
furnishes the following complementary insights for
climate policy in addition to the common practice
of expressing climate impacts as absolute monetary
losses or losses as a percentage of GDP. It is likely that
future climate change impacts that exceed historical
economic shocks from both climate and non-climate
causes will be experienced as severe and undesirable
by society, which implies that policymakers would
aim to prevent such shocks from occurring. For
example, the financial crisis that started in 2008 res-
ulted in severe economic shocks in many parts of the
world, which negatively affected human well-being
in countries with adverse macroeconomic conditions
(Arampatzi et al 2019). As a response, additional fin-
ancial sector regulations and safety nets were put in
place in many countries to limit the risks of sim-
ilar shocks occurring again in the future. Informa-
tion on when climate impacts will exceed such his-
torical GDP shocks and how this occurrence can be
avoided or delayed by climate policy could be useful
for proactive governments that aim to prevent severe
societal impacts due to climate change. Moreover,
the ability to delay the ToEI through reductions in
greenhouse gas emissions can be viewed as providing
time to implement adaptation measures to prevent
severe economic shocks caused by climate change
from materializing. The concept of time of emer-
gence (ToE) has its origins in the climate sciences
and can be defined as the date when the climate sig-
nal emerges from the background, natural climate
variability. The methodology of ToE of climate sig-
nals is well described by Hawkins and Sutton (2012),
who explore the long-term inter-annual temperat-
ure variability for various general circulation mod-
els and estimate the ToE for each of them. A similar
methodology is applied by Mora et al (2013), who
also identify the starting date when temperatures con-
tinuously exceed the natural climate variability of the
post–industrial revolution era and may be harmful
for biodiversity and society. Lyu et al (2014) estimate
the ToE of sea-level rise relative to a 19 year baseline
period (1986–2005).

The ToE literature has thus far focused on variab-
ility in physical variables (e.g. temperature), whereas
we are interested in the implications of climate change
on economic output. In other words, we focus on
identifying the ToE of severe climate change impacts
that exceed historical economic output shocks. We
define historical output shocks as deviations from
a long-term economic trend, which we compute by
using a set of time-series filters. We illustrate the
ToEI using probabilistic climate change projections
and impact functions from integrated assessment
models (IAMs), which are a prominent framework
for generating economic estimates of climate change
impacts. The concept of IAMs is based on the seminal
work by William Nordhaus (1992). Since then, many
more IAMs have emerged (Nordhaus and Yang 1996,

Bosetti et al 2007, Stern 2008, Dietz 2011, Hope 2011,
Anthoff and Tol 2014, Admiraal et al 2016, Estrada
and Botzen 2021, Van Vuuren et al 2018) with various
model specifications and geographic scales, ranging
from global (Nordhaus 2017) and regional (Hope
2011, Nordhaus 2011, Anthoff and Tol 2014) to the
grid-cell level (Estrada and Botzen 2021, Estrada et al
2020, Ignjacevic et al 2020). These models attempt to
measure a variety of climate-related impacts, includ-
ing crop yield losses, industrial output losses, coastal
and river flooding, and health impacts. Many of the
abovementioned models monetize climate impacts
and express them either in absolute terms or relative
to annual gross domestic product (GDP). We apply
the ToEI methodology to IAM impact functions of
various spatial resolutions, covering a broad range of
climate and socio-economic contexts. First, we com-
pute the ToEI for the well-establishedDICE and RICE
impact functions (Nordhaus 2017), demonstrating
that this riskmeasure can readily be included in IAMs
that cover different spatial scales5. We repeat the pro-
cess using the local-scale CLIMRISK model (Estrada
and Botzen 2021, Ignjacevic et al 2020)6, establish-
ing that the ToEI methodology can also exploit high-
resolution IAMs.

The ToEI concept presented in this paper can be
applied by researchers working with various climate
change impactmethodologies (Mendoza-Tinoco et al
2017, Xie et al 2018), including empirical studies
(Burke et al 2015) and sectoral models that make
future impact projections (Ermolieva et al 2018,
Estrada et al 2020). Moreover, the results may be use-
ful for policymakers interested in applying timely cli-
mate policies to prevent potentially large economic
shocks due to climate change.

2. Methodology and data

Themethodology of ToEI of climate change proposed
in this paper focuses on identifying the first year in
which future (climate) impacts will exceed historical
economic shocks. Historical shocks may have been
caused by non-climatic reasons. Irrespective of their
cause, the severity of the economic impacts of such
shocks matters for social welfare, and it is those eco-
nomic impacts as a percentage of GDP that we use
as a threshold for comparison with future climate
impacts. Once this threshold has been crossed, the
change is permanent unless temperatures decline in
the long run—for example, due to stringent climate
policy measures.

The procedure for estimating the ToEI of climate
change is illustrated in figure 1. In short, climate

5 Only the original impact functions from the DICE and RICE
models are used in this study, rather than the entire IAM frame-
work.
6 SI 3.
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Figure 1. Flow diagram for estimating the ToEI of climate change using DICE, RICE and CLIMRISK models.

inputs (e.g. temperature) are fed into the impact func-
tion of choice in order to compute future climate
impacts. Next, time-series filters are used to extract
negative variations around the trend of historical
economic data. The empirical distribution of these
shocks is compared to the projected future impacts
to determine the ToEI. The full details of the vari-
ous components of the ToEI calculation summarized
here are presented in the supplementary informa-
tion (SI) (available online at stacks.iop.org/ERL/16/
074039/mmedia).

The ToEI calculation can be performed in the fol-
lowing way. Let X denote the logarithms of an eco-
nomic time series, which in our application is eco-
nomic output sample size n7:

X= {x1,x2, . . . ,xn} . (1)

Vector X can contain a single time series (e.g.
global GDP) or can have a panel structure repres-
enting time series of economic output for different
geographic locations. We collected the annual eco-
nomic time series of output data (constant GDP)
from the Maddison Project database (Bolt, Inklaar,
de Jong & Luiten van Zanden, 2018). The latest ver-
sion of this database (2018) covers 169 countries8. For

7 Economic output can refer to total, sectoral, firm-level, or other
output.
8 The lists of countries (SI table 11) and missing data (SI table 10)
are presented in SI 4.

most countries, theMaddison Project database covers
a period of 67 years of modern historical GDP variab-
ility for the computation of the ToEI.

The past economic output time series X can be
decomposed into a trend component (τ ) and a cyc-
lical component (c). For each country in year n, we
have

xn = τn + cn. (2)

A variety of filters common in macroeconomic
analysis of business cycles can be used for trend-
cycle decomposition (Mills 2003). Examples of these
filters include Hodrick-Prescott (HP; Hodrick and
Prescott 1997), Christiano-Fitzgerald (CF; Christiano
and Fitzgerald 2003), and Baxter King (BK; Baxter
and King 1999). Care must be taken in parametriz-
ing the functions of different filters to account for the
length of business cycles and the frequency of time-
series data (e.g. annual, semi-annual, monthly, etc.)9.
The cyclical component constitutes a time series C
with n time periods10:

C= {c1, c2, . . . , cn} , (3)

where C⊂ R (subset of real numbers).

9 SI 7.
10 A detailed example of the calculation using three case study
regions is presented in SI 4.1.
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By isolating the negative values of the time series
of the cyclical component, the set of past negative out-
put deviations from the long-term trend can be con-
structed. We label this set of past economic shocks
C−, as it represents all historical negative shocks
from economic, climate and a wide variety of other
sources:

C− = {c1, c2, . . . , cm} , (4)

where C− ⊂ R− (subset of real negative numbers).
The set of shocks estimated for any given coun-

try is stored as a vector of values that can be
compared against a user-defined shock threshold.
We calculate the economic shocks between 1950
and 2016 per country, per region, and for the
world.

Next, the time-series estimates of future impacts,
defined asD, are required for comparison against past
shocks. The units of future impact estimates D must
correspond to the units used in C and C−, as they
are directly compared in equation (7). We express
both historical shocks and future climate impacts
as a percentage of GDP, because such historically
severe percentage of GDP shocks are also likely to be
severe in the future, even if society were to become
richer11.

D= {dt,dt+1 . . . ,dt+z} (5)

where t and t+ z are the first and last years for which
the projections are available and t > n, implying that
the first year of impact projections must be after the
last year of past observed impacts.

The ToEI is estimated by comparing the distribu-
tion of past economic shocks with the projected cli-
mate impacts generated by some impact function:

ToEI= t− 1+
z∑

i=0

bi (6)

where bi is a Boolean variable for year i indicating
whether the impact projections have exceeded a pre-
determined shock threshold. Formally, it is defined as
follows:

bi =

{
0 for dt ⩾ c∗

1 for dt < c∗
(7)

where c∗ represents a percentile value from the set
C−12. In this paper, two threshold values are chosen

11 The reason is a similar % GDP shock would result in higher
absolute GDP losses when future GDP levels are higher.

12 There exist two special cases, where
z∑

i=0
bi = z (i.e. all values

of bi = 1) and
z∑

i=0
bi = 0 (i.e. all values of bi = 0). The first case

to illustrate the methodology: the 75th and 95th per-
centiles of past economic shocks. These percentile val-
ues are commonly used in uncertainty and risk ana-
lyses and cover a broad range of results.

We illustrate the concept of ToEI on various spa-
tial scales by applying impact functions from three
IAMs that estimate the same climate change impact
categories, namely losses to major economic sectors
such as agriculture, the costs of sea-level rise, adverse
impacts on health, non-market impacts, and cata-
strophic impacts (see SI 1, 2, 3). First, we determine
the extreme output shocks for the world as a whole
and draw comparisons with the model using the
DICE impact function for climate change-induced
impact projections to calculate the global ToEI val-
ues13. For this, we use the standard DICE model
impact function, which estimates damages due to cli-
mate change based on global average temperature rise
and global GDP. Next, we divide the world into 12
regions corresponding to those in the RICE model,
which is the regional version of DICE14. We then
compute the regional ToEI estimates for the RICE
model impact functions that are based on global aver-
age temperature rise (Nordhaus 2017). Lastly, we use
the recently developed CLIMRISKmodel to compute
grid-cell level ToEI estimates using pattern-scale tem-
perature change projections.

CLIMRISK is a global model that assesses the
dynamic economic impacts of climate change at the
local scale (0.5◦ × 0.5◦) for various socioeconomic
and climate change projections. This is done by com-
bining local GDP exposure information (Grübler et al
2007) with annual global temperature projections
obtained using the MAGICC climate model and scal-
ing patterns from the climate models included in
the CMIP5 (Kravitz et al 2017, Lynch et al 2017).
The CLIMRISK impact module encompasses a broad
range of economic sectors and assumptions about
impact dynamics, and makes a distinction between
urban and non-urban areas by accounting for the
urban heat island (UHI) effect (Estrada et al 2017).
The result is a global, dynamic, IAM that projects
climate impacts on a local, regional and global scale
(Estrada and Botzen 2021, Ignjacevic et al 2020)15.
Detailed descriptions of eachmodel and impact func-
tion parameters are presented in SI.1 (DICE), SI.2
(RICE), and SI.3 (CLIMRISK).

implies that the ToEI was never reached within the specified hori-
zon, and ToEI> t+ z− 1. In the latter case, the ToEI is exceeded in
the first period of evaluation or before, and ToEI < t. In this paper,
t= 2010, z= 91, meaning that we are evaluating the ToEI between
2010 and 2100.
13 SI 1.
14 SI 2.
15 SI 3.
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Table 1. ToEI of climate change for the DICE model impact
function under various RCP scenarios and historical shock
thresholds; HP filter.

DICE global ToEI 75th ToEI 95th

RCP 4.5 2059 2095
RCP 8.5 2044 2062

3. Results

The ToEI of climate change can be computed for
any climate-economy IAM using the method pro-
posed in this paper. We first present the ToEI res-
ults for the well-established DICE and RICE impact
functions before proceeding to the local-scale CLIM-
RISK impact function, with an added focus on res-
ults for urban areas. Although the scale of the res-
ults is different across the three models, the impact
functions are consistent and can be readily compared
with one another. However, the CLIMRISK model
takes advantage of local scale temperature and eco-
nomic output projections and takes the UHI effect
into account.

The results are available for various Representat-
ive Concentration Pathways (RCPs; Moss et al 2010).
To illustrate the advantages of climate change mit-
igation, the results are presented for the RCP 4.5
and RCP 8.5 scenarios, which can be interpreted
as an emission scenario consistent with full com-
pliance with the global mitigation effort described
in the current nationally determined contributions
and a high-emission scenario with no climate policy,
respectively16.

Although we focus on results generated using the
HP filter, SI 6.4 presents a sensitivity analysis using
other filters. The results are presented for two differ-
ent historical impact thresholds, the 75th and 95th
percentiles. Although both represent high historical
impacts, the proposed methodology can produce res-
ults for any other percentile calculated from the past
negative shock distribution.

3.1. DICEmodel impact function
Whereas the climate impacts under the RCP 2.6
would not exceed past extreme output shocks (95th
percentile), under the RCP 4.5, they would do so by
2095, and, under the RCP 8.5, by 2062 (table 1). A
lower shock threshold (75th percentile) is exceeded
some decades earlier, including for the RCP 4.5 scen-
ario. This is because at this threshold, future cli-
mate impacts are compared with smaller past out-
put shocks when estimating the ToEI. In summary,
the DICE results demonstrate that at a global level,
the ToEI occurs between years 2044 (75th shock per-
centile) and 2062 (95th shock percentile) in a scen-
ario without climate policy (RCP 8.5). The dates for

16 For results using alternative climate scenarios, damage func-
tions, and filters, please refer to SI 6.

ToEI can be significantly delayed by adopting moder-
ate (RCP 4.5) or more ambitious climate change mit-
igation strategies. In other words, mitigation can buy
valuable time to adapt to severe climate change. Since
this example relies on the global DICE impact func-
tion, no location-specific information can be extrac-
ted about where and when such severe effects might
occur.

3.2. RICEmodel impact functions
Table 2 presents the estimates of ToEI under the RCP
4.5 and RCP 8.5 scenarios for the 12 regional RICE
model impact functions, in combination with the HP
filter17.

The results highlight that under the RCP 8.5 scen-
ario, the RICE regions of Africa, India, and Western
Europe are expected to experience climate impacts
comparable to extreme economic shocks (95th per-
centile) that occurred in the past 50 years by the years
2085, 2083, and 2075, respectively. Highly developed
regions, such as the US, Japan and other high-income
countries, are expected to reach the ToEI threshold
by 2098, 2087, and 2084, respectively. If a lower
shock threshold (75th percentile) is used, then the
ToEI occurs in the middle of the century in several
regions and even earlier in Africa. Even on the coarse
spatial scale of the RICE model, highly developed
regions such as Western Europe, Japan, and the US
are expected to exceed both thresholds (75th and
95th percentiles) during the current century under
the high emission scenario (RCP 8.5) and in West-
ern Europe possibly even under the moderate cli-
mate policy scenario (RCP 4.5). Nevertheless, the
advantages of climate mitigation policies are evident
once again, with no regions expecting a ToEI that
corresponds to the 95th percentile impact threshold
in the 21st century under the moderate mitigation
scenario (RCP 4.5). Such moderate mitigation would
provide many regions with several decades to adapt
to extreme climate change impacts.

3.3. CLIMRISKmodel impact functions
The CLIMRISK model allows local-level socio-
economic and climate data to be used to obtain more
spatially detailed ToEI estimates (figure 2). In the case
of the RCP 4.5 scenario, several areas within Africa
and almost all grid cells in India have ToEI values
before 2040 when the 75th percentile threshold is
considered. By contrast, under the RCP 8.5 scenario,
the occurrence of ToEI during the present century
is widespread, including in most of Europe (around
2050–2060) and the US (2060–2070). When consid-
ering the 95th percentile threshold, most of the US
and Europe have ToEI values occurring during the
last two decades of this century, and most of India,

17 Shock values for all RICE regions are presented in SI table 3. For
the full list of Maddison Project database countries belonging to
each RICE region, see SI table 11.
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Table 2. ToEI of climate change using the RICE model impact functions under various RCP scenarios and historical shock thresholds;
HP filter. The gray areas represent cases where ToEI was not reached within the current century. Reprinted from [Ignjacevic, P. et al],
Copyright (2020), with permission from Elsevier.

RCP 8.5 RCP 4.5

RICE region ToEI 75th ToEI 95th ToEI 75th ToEI 95th

United States 2082 2098

Western Europe 2052 2075 2077

Japan 2073 2087

Russia 2086

Eurasia18

China19 2100

India 2048 2083 2068

Middle East 2064 2094 2096

Africa 2042 2085 2053

Latin America 2069 2100 2099

Other High Income 2064 2084 2096

Other Asia 2046 2083 2063

Figure 2. ToEI for the CLIMRISK model under the RCP 4.5 (top) and RCP 8.5 (bottom) scenarios for the 75th and 95th
percentiles of shock threshold. HP Filter.

Southern Africa, and North Africa would exceed this
threshold by mid-century.

18The lack of ToEI in the Eurasian region in the 21st century can
be explained by the relatively low sensitivity of the RICE damage
function to increases in global temperature (SI table 2).
19The relatively high ToEI value in China could be attributed to
the 1960s Great Chinese Famine, which had severe impacts on the

3.4. Urban areas
One of the main advantages of CLIMRISK is the
inclusion of the UHI effect in its temperature estim-
ates and impact functions, which rely on the Shared

economy and is regarded as one of the greatest man-made disasters
in human history.

6
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Figure 3. ToEI for selected cities for the median realization of temperature projections for the RCP 8.5—SSP5 scenario
combination. HP Filter21.

Socioeconomic Pathway (SSP) projections20. Due to
the joint effect of global and local climate change at
the city level, we can expect that in highly populated
cells we refer to as city-cells, the ToEI would occur
sooner than in rural areas. As we lack observed city-
level data of historical economic output on a global
scale, we assume that country-level economic shocks
are to a large degree experienced by the city-cells in a
given country.

Figure 3 presents ToEI estimates across various
shock thresholds for selected global cities. The steep-
ness of the line is inversely related to the level of
risk: the steeper the line, the later the specific shock
threshold is exceeded. For example, while Paris is
expected to exceed the 95th percentile of its past eco-
nomic shocks around 2020, Shanghai would expect
its equivalent around 2080 under the RCP 8.5 and
SSP5 scenario combination. The ability to observe
such local-scale climate differences is only possible
through the use of an IAM with a detailed spatial res-
olution, such as CLIMRISK.

4. Discussion

The ToEI is a flexible risk measure and can be adjus-
ted to reflect the user’s preferences and inform-
ation needs. The user can set the emissions and
socio-economic scenarios and the threshold of eco-
nomic shocks, as well as choose from a variety of
impact functions and select the time horizon over
which climate impact shocks are assessed. Climate

20 These SSP population projection scenarios are explained in full
detail in SI 3.3.
21 See also SI figures 4 and 5 for results under various temperature
realizations as a measure of climate uncertainty.

scenarios, impact functions, and damage thresholds
are all adjustable parameters that form the climate
risk uncertainty bounds. Although the purpose of
our application of the ToEI to the impact functions
of three IAMs was to illustrate that the concept can
be applied at various scales, this does not neces-
sarily mean it is equally useful at every scale. For
example, there may be a mismatch between the loc-
ation of historical economic shocks in a country or
region and the location where severe future climate
impacts occur22. One could argue the country scale
is most suitable since the ToEI can inform climate
change mitigation and adaptation policy decisions
of national governments. Nevertheless, global results
can inform international climate policy agreements,
while city level results can inform city climate adapt-
ation planning.

With the DICE model impact functions, global
GDP data were used. These results demonstrate that
the ToEI can be computed for the case of a single
global annual impact, but information on local het-
erogeneity of impacts is lacking. Using spatially expli-
cit impact functions allowed us to identify regions
and countries in which the ToEI would occur relat-
ively soon, meaning that such areas would experi-
ence greater climate change shocks relative to histor-
ical economic shocks. Particularly vulnerable regions
are Africa, India, and Western Europe. Remarkably
vulnerable countries in Africa are Algiers, Cameroon,
Egypt, and the Republic of South Africa, while,
in Europe, Sweden, Norway, and France are most

22 This potential mismatch in scale may be less serious than one
might initially expect since our results demonstrate that most cli-
mate impacts occur in cities in which most (past and future) GDP
is earned.

7
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Figure 4. Relative climate impacts in the CLIMRISK model, expressed as percentage losses of GDP for the RCP 4.5—SSP2 and
RCP 8.5—SSP5 scenario combinations.

vulnerable. These areas could be seen as hotspots of
economic climate risk where the benefits of climate
change adaptation and mitigation policies would be
especially large. The new risk metric also helps to
illustrate the effects of internationalmitigation efforts
in delaying the worst economic impacts of climate
change and the benefits of suchmeasures in providing
more time for adaption.

The ToEI results imply that economically stable,
developed countries in Western Europe and the US
could experience severe relative impacts of climate
change, similar to those of some developing coun-
tries. This important implication can be derived from
the ToEI methodology: the historical GDP impact
threshold is lower for the regions with less severe
past GDP shocks, making it more likely that future
impactswill exceed this predetermined value. In other
words, the ToEI is reached relatively early (late) in
regions which experienced relatively small (large)
GDP fluctuations in the past. This is an intentional
design and serves as an alternative to more tradi-
tional impact monetization practices. For example,
it is at odds with the notion that high levels of eco-
nomic development make developed countries safer
in the face of climate change. Figure 4 presents the
results of climate change impacts that are expressed
as percentage losses of GDP; by this traditional meas-
ure, low-income areas in Africa and India are expec-
ted to fare much worse than developed areas such
as the US and Western Europe. We propose that
developed countries may also be more likely to per-
ceive the effects of climate change impacts as severe
shocks to their economies, whereas developing coun-
tries may have more experience with political con-
flict and economic crises. Nevertheless, our finding
that according to the ToEI metric, developed coun-
triesmainly in Europe are vulnerable to severe climate
impacts does not mean that these risks are not high

for several developing countries as well. For example,
some regions in Africa and India experience the ToEI
even sooner than Europe.

The significantly later occurrence of ToEI under
the RCP 4.5 scenario suggests that even moderate
climate mitigation can buy countries up to several
decades of time to adapt to climate change.Moreover,
abiding by climate policy consistent with the Paris
Agreement can significantly delay ToEI occurrence to
well beyond the 21st century23.

However, many areas in the world are not expec-
ted to experience ToEI in the 21st century. This can
be explained either by the high damage threshold to
which future climate impacts are compared (large
historical GDP shocks) or by relatively low climate
impacts in a particular area24.

4.1. Sensitivity analysis
The results of the ToEI model are dependent on
the choice of the impact threshold. Relatively high
values (>90th percentile) represent high historical
impacts that are less likely to be exceeded by future cli-
mate change developments. The results appear robust
across different socioeconomic scenarios, as past eco-
nomic shocks are scenario-independent. An excep-
tion is the UHI effect, which depends on urban pop-
ulation, but ToEI results are not very sensitive to
assumed SSPs (SI 6.2). The sensitivity analysis does
indicate that the assumed damage function influ-
ences ToEI values, since accounting for persistence
in impacts and the UHI implies ToEI values are
experienced sooner, especially in developing coun-
tries (SI 6.3). Increasing the realized temperature

23 SI figure 1.
24 This also implies a low PoEI value, as the probability of any given
run exceeding the threshold is low.
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leads to an earlier ToEI across all cells (SI 6.1). How-
ever, this finding does not affect the main conclusion
of this paper about the distribution of ToEI across
cells.

The sensitivity of the results to climate is further
illustrated through the probability of emergence of
impacts (PoEI) metric, which is based on the number
of times each cell’s climate impact estimate exceeds
the previously defined extreme threshold in 500 tem-
perature realizations used to sample climate uncer-
tainty. The PoEI is 100% under RCP 8.5, but is
reduced to 26%underRCP4.5 and approximates zero
under the significant emission reductions projected
under the RCP 2.6 scenario (95th shock percentile; SI
6.6).

4.2. Limitations
Limitations and the usefulness of IAM impact func-
tions are widely discussed in literature (Ackerman
et al 2009, VanDenBergh andBotzen 2015, Tol 2018).
Here we highlight threemain limitations in our study.
First, it has been argued that the IAM impact func-
tion specifications may be incomplete in capturing
the relationship between temperature and economic
impacts due to missing cost categories (Stern 2013).
Second, there is aggregation of hazard and expos-
ure across time and space making it difficult to isol-
ate the effects of extreme climate events or economic
impacts on a particular industry (e.g. agriculture).
Third, the past economic shock datawe used in estim-
ating the ToEI is on a country-level, which reduces
the accuracy of local-scale ToEI estimates in the CLI-
MRISK model. Our study is a first attempt to illus-
trate the ToEI concept. Our approach for estimating
the ToEI compared future climate impacts with his-
torical GDP shocks from any cause (including climate
and non-climate events). This was done on purpose
because it places future climate impacts in the context
of experienced historical GDP fluctuations, including
extreme economic shocks such as the 2008 financial
crisis.

It should be noted that comparing projected cli-
mate impacts to historical GDP shocks alone could
represent an overly reductionistic approach to estim-
ate the future ToEI. For example, such thresholds
do not fully account for climate adaptation and eco-
nomic development which can be expected to be
very different in the future. Nevertheless, we hope
that the ToEI measure we presented in this manu-
script represents a solid first step in a growing body
of literature on the TOI of climate change. Future
research could apply this methodology to estimate
the ToEI of future climate impacts exceeding histor-
ical GDP shocks caused by historical climate events
alone. Comprehensive ToEI assessment could be con-
ducted for the entire economy or any sector, such
as agriculture and using updated thresholds that
account for economic development and adaptation
levels.

5. Conclusion

IAMs of climate change tend to express negative
impacts of climate as an absolute value or as a fraction
of lost economic output, usually GDP. However, this
approach does not place climate impacts in the con-
text of past economic shocks, which would measure
the severity of impacts on the economy relative to
those experienced before. We have introduced ToEI
as a novel risk measure that can be applied to various
impact studies and integrated assessment and sectoral
models that form future impact projections.We apply
this methodology to impact functions from three cli-
mate IAMs of varying resolution—DICE, RICE, and
CLIMRISK—to determine the ToEI associated with
various levels of climate policy.

The ToEI identifies the first year in which pro-
jected impacts exceed historically observed impacts.
Using the methodology developed in this paper, users
can define an impact threshold and calculate the ToEI
for their specific applications.

Three key conclusions emerge from this paper
concerning both the ToEI methodology in general
and the ToEI of climate change. First, the methodo-
logy of ToEI can be applied to impact models of dif-
ferent spatial scales when sufficient past impact data
are available, as demonstrated by the results presen-
ted above using impact functions from three IAMs of
varying scales. The advantages of a local-scale IAM
can be fully exploited through the ToEI methodology,
such that regional and local impact heterogeneities
emerge, as is the case with the CLIMRISK model.

Second, even though climate change is expected
to affect low-income countries the most when losses
are expressed using traditional impact measures (e.g.
absolute output loss or fraction of annual output
lost), developed countries in Europe could experi-
ence the ToEI in a way not much different from that
of the developing countries. The impacts of climate
change may be most negative in the highly developed
cities around the world, where the ToEI may soon
be exceeded. This conclusion is in line with the idea
that relative impactsmatter and that highly developed
areas have not experienced such large negative eco-
nomic shocks in the past 50 years.

Finally, moderate to stringent climate mitiga-
tion policy can significantly reduce the risk of ToEI
occurrence, potentially ‘buying’ enough time for
implementation of climate adaptation measures. The
results presented here underline the importance of
compliance with the Paris Agreement in order to seri-
ously limit climate change risks, but they also demon-
strate the important benefits that can result from
intermediate mitigation efforts.

Data availability statement
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available upon reasonable request from the authors.
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